Back to jobs

Research Manager, Interpretability

San Francisco, CA

About Anthropic

Anthropic’s mission is to create reliable, interpretable, and steerable AI systems. We want AI to be safe and beneficial for our users and for society as a whole. Our team is a quickly growing group of committed researchers, engineers, policy experts, and business leaders working together to build beneficial AI systems.

About the Interpretability team:

When you see what modern language models are capable of, do you wonder, "How do these things work? How can we trust them?"

The Interpretability team’s mission is to reverse engineer how trained models work, and Interpretability research is one of Anthropic’s core research bets on AI safety. We believe that a mechanistic understanding is the most robust way to make advanced systems safe. 

People mean many different things by "interpretability". We're focused on mechanistic interpretability, which aims to discover how neural network parameters map to meaningful algorithms. Some useful analogies might be to think of us as trying to do "biology" or "neuroscience" of neural networks, or as treating neural networks as binary computer programs we're trying to "reverse engineer".

We aim to create a solid scientific foundation for mechanistically understanding neural networks and making them safe (see our vision post). We have focused on resolving the issue of "superposition" (see Toy Models of Superposition, Superposition, Memorization, and Double Descent, and our May 2023 update), which causes the computational units of the models, like neurons and attention heads, to be individually uninterpretable, and on finding ways to decompose models into more interpretable components. Our subsequent work which found millions of features in Claude 3.0 Sonnet, one of our production language models, represents progress in this direction. In our most recent work, we developed methods that allow us to build circuits using features and use these circuits to understand the mechanisms associated with a model's computation and study specific examples of multi-hop reasoning, planning, and chain-of-thought faithfulness on Claude Haiku 3.5, one of our production models.” This is a stepping stone towards our overall goal of mechanistically understanding neural networks.

 

 

A few places to learn more about our work and team are this introduction to Interpretability from our research lead, Chris Olah, Stanford CS25 lecture given by Josh Batson, and TWIML AI podcast with Emmanuel Ameisen.

 

Some of our team's notable publications include and our Circuits’ Methods and Biology papers, Scaling Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet, Towards Monosemanticity: Decomposing Language Models With Dictionary Learning, A Mathematical Framework for Transformer Circuits, In-context Learning and Induction Heads, and Toy Models of Superposition. This work builds on ideas from members' work prior to Anthropic such as the original circuits thread, Multimodal Neurons, Activation Atlases, and Building Blocks.

About the role:

As a manager on the Interpretability team, you'll support a team of expert researchers and engineers who are trying to understand at a deep, mechanistic level, how modern large language models work internally. 

Few things can accelerate this work more than great managers. Your work as manager will be critical in making sure that our fast-growing team is able to meet its ambitious safety research goals over the coming years. In this role, you will partner closely with an individual contributor research lead to drive the team's success, translating cutting-edge research ideas into tangible goals and overseeing their execution. You will manage team execution, careers and performance, facilitate relationships within and across teams, and drive the hiring pipeline. 

If you're more interested in making individual direct technical contributions to our research as the primary focus of your role, feel free to apply to our Research Scientist or Research Engineer roles instead.

 

Responsibilities:

  • Partner with a research lead on direction, project planning and execution, hiring, and people development
  • Set and maintain a high bar for execution speed and quality, including identifying improvements to processes that help the team operate effectively 
  • Coach and support team members to have more impact and develop in their careers
  • Drive the team's recruiting efforts, including hiring planning, process improvements, and sourcing and closing
  • Help identify and support opportunities for collaboration with other teams across Anthropic
  • Communicate team updates and results to other teams and leadership
  • Maintain a deep understanding of the team's technical work and its implications for AI safety

You may be a good fit if you:

  • Are an experienced manager (minimum 2-5 years) with a track record of effectively leading highly technical research and/or engineering teams 
  • Have a background in machine learning, AI, or a related technical field
  • Actively enjoy people management and are experienced with coaching and mentorship, performance evaluation, career development, and hiring for technical roles
  • Have strong project management skills, including prioritization and cross-functional coordination and collaboration
  • Have managed technical teams through periods of ambiguity and change
  • Are a quick learner, capable of understanding and contributing to discussions on complex technical topics and are motivated to learn about our research
  • Are a strong communicator both in speaking and in writing
  • Believe that advanced AI systems could have a transformative effect on the world, and are passionate about helping make sure that transformation goes well

Strong candidates may also have:

  • Experience scaling engineering infrastructure
  • Experience working on open-ended, exploratory research agendas aimed at foundational insights
  • Some familiarity with our work and mechanistic interpretability

Role Specific Location Policy:

  • This role is expected to be in our SF office for 3 days a week.

The expected salary range for this position is:

Annual Salary:

$340,000 - $425,000 USD

Logistics

Education requirements: We require at least a Bachelor's degree in a related field or equivalent experience.

Location-based hybrid policy:
Currently, we expect all staff to be in one of our offices at least 25% of the time. However, some roles may require more time in our offices.

Visa sponsorship: We do sponsor visas! However, we aren't able to successfully sponsor visas for every role and every candidate. But if we make you an offer, we will make every reasonable effort to get you a visa, and we retain an immigration lawyer to help with this.

We encourage you to apply even if you do not believe you meet every single qualification. Not all strong candidates will meet every single qualification as listed.  Research shows that people who identify as being from underrepresented groups are more prone to experiencing imposter syndrome and doubting the strength of their candidacy, so we urge you not to exclude yourself prematurely and to submit an application if you're interested in this work. We think AI systems like the ones we're building have enormous social and ethical implications. We think this makes representation even more important, and we strive to include a range of diverse perspectives on our team.

How we're different

We believe that the highest-impact AI research will be big science. At Anthropic we work as a single cohesive team on just a few large-scale research efforts. And we value impact — advancing our long-term goals of steerable, trustworthy AI — rather than work on smaller and more specific puzzles. We view AI research as an empirical science, which has as much in common with physics and biology as with traditional efforts in computer science. We're an extremely collaborative group, and we host frequent research discussions to ensure that we are pursuing the highest-impact work at any given time. As such, we greatly value communication skills.

The easiest way to understand our research directions is to read our recent research. This research continues many of the directions our team worked on prior to Anthropic, including: GPT-3, Circuit-Based Interpretability, Multimodal Neurons, Scaling Laws, AI & Compute, Concrete Problems in AI Safety, and Learning from Human Preferences.

Come work with us!

Anthropic is a public benefit corporation headquartered in San Francisco. We offer competitive compensation and benefits, optional equity donation matching, generous vacation and parental leave, flexible working hours, and a lovely office space in which to collaborate with colleagues.

Apply for this job

*

indicates a required field

Resume/CV*

Accepted file types: pdf, doc, docx, txt, rtf


How do you pronounce your name?

Select...

While we encourage people to use AI systems during their role to help them work faster and more effectively, please do not use AI assistants during the application process. We want to understand your personal interest in Anthropic without mediation through an AI system, and we also want to evaluate your non-AI-assisted communication skills. Please indicate 'Yes' if you have read and agree. 

Why do you want to work at Anthropic? (We value this response highly - great answers are often 200-400 words.)

Select...

Add a cover letter or anything else you want to share.

Please ensure to provide either your LinkedIn profile or Resume, we require at least one of the two. 

Select...
Select...
Select...
Select...

Voluntary Self-Identification

For government reporting purposes, we ask candidates to respond to the below self-identification survey. Completion of the form is entirely voluntary. Whatever your decision, it will not be considered in the hiring process or thereafter. Any information that you do provide will be recorded and maintained in a confidential file.

As set forth in Anthropic’s Equal Employment Opportunity policy, we do not discriminate on the basis of any protected group status under any applicable law.

Select...
Select...
Race & Ethnicity Definitions

If you believe you belong to any of the categories of protected veterans listed below, please indicate by making the appropriate selection. As a government contractor subject to the Vietnam Era Veterans Readjustment Assistance Act (VEVRAA), we request this information in order to measure the effectiveness of the outreach and positive recruitment efforts we undertake pursuant to VEVRAA. Classification of protected categories is as follows:

A "disabled veteran" is one of the following: a veteran of the U.S. military, ground, naval or air service who is entitled to compensation (or who but for the receipt of military retired pay would be entitled to compensation) under laws administered by the Secretary of Veterans Affairs; or a person who was discharged or released from active duty because of a service-connected disability.

A "recently separated veteran" means any veteran during the three-year period beginning on the date of such veteran's discharge or release from active duty in the U.S. military, ground, naval, or air service.

An "active duty wartime or campaign badge veteran" means a veteran who served on active duty in the U.S. military, ground, naval or air service during a war, or in a campaign or expedition for which a campaign badge has been authorized under the laws administered by the Department of Defense.

An "Armed forces service medal veteran" means a veteran who, while serving on active duty in the U.S. military, ground, naval or air service, participated in a United States military operation for which an Armed Forces service medal was awarded pursuant to Executive Order 12985.

Select...

Voluntary Self-Identification of Disability

Form CC-305
Page 1 of 1
OMB Control Number 1250-0005
Expires 04/30/2026

Why are you being asked to complete this form?

We are a federal contractor or subcontractor. The law requires us to provide equal employment opportunity to qualified people with disabilities. We have a goal of having at least 7% of our workers as people with disabilities. The law says we must measure our progress towards this goal. To do this, we must ask applicants and employees if they have a disability or have ever had one. People can become disabled, so we need to ask this question at least every five years.

Completing this form is voluntary, and we hope that you will choose to do so. Your answer is confidential. No one who makes hiring decisions will see it. Your decision to complete the form and your answer will not harm you in any way. If you want to learn more about the law or this form, visit the U.S. Department of Labor’s Office of Federal Contract Compliance Programs (OFCCP) website at www.dol.gov/ofccp.

How do you know if you have a disability?

A disability is a condition that substantially limits one or more of your “major life activities.” If you have or have ever had such a condition, you are a person with a disability. Disabilities include, but are not limited to:

  • Alcohol or other substance use disorder (not currently using drugs illegally)
  • Autoimmune disorder, for example, lupus, fibromyalgia, rheumatoid arthritis, HIV/AIDS
  • Blind or low vision
  • Cancer (past or present)
  • Cardiovascular or heart disease
  • Celiac disease
  • Cerebral palsy
  • Deaf or serious difficulty hearing
  • Diabetes
  • Disfigurement, for example, disfigurement caused by burns, wounds, accidents, or congenital disorders
  • Epilepsy or other seizure disorder
  • Gastrointestinal disorders, for example, Crohn's Disease, irritable bowel syndrome
  • Intellectual or developmental disability
  • Mental health conditions, for example, depression, bipolar disorder, anxiety disorder, schizophrenia, PTSD
  • Missing limbs or partially missing limbs
  • Mobility impairment, benefiting from the use of a wheelchair, scooter, walker, leg brace(s) and/or other supports
  • Nervous system condition, for example, migraine headaches, Parkinson’s disease, multiple sclerosis (MS)
  • Neurodivergence, for example, attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, dyslexia, dyspraxia, other learning disabilities
  • Partial or complete paralysis (any cause)
  • Pulmonary or respiratory conditions, for example, tuberculosis, asthma, emphysema
  • Short stature (dwarfism)
  • Traumatic brain injury
Select...

PUBLIC BURDEN STATEMENT: According to the Paperwork Reduction Act of 1995 no persons are required to respond to a collection of information unless such collection displays a valid OMB control number. This survey should take about 5 minutes to complete.