Back to jobs
New

Member of Technical Staff

Menlo Park

Radical Numerics is an AI lab bringing the rigor of distributed systems, model architecture, and numerics research to the challenges of biology. We are building the infrastructure needed to unlock scaling on vast biological sequence, structure, and image datasets so that biological world models become a reality. Our team introduced the first hybrid architectures that unlocked million-token context windows, enabling the first AI-designed whole genomes and real gene-editing tools.

 

Summary: As a Member of Technical Staff at Radical Numerics, you will play a pivotal role in designing and building the computational foundations necessary to scale biological world models. You will work across the stack, integrating distributed training systems, architecture design, and scaling laws, to translate cutting-edge research into state-of-the-art models.

 

Responsibilities:

  • Design large-scale training recipes for multimodal biological world models, including data curricula and scaling protocols (Training track).
  • Implement distributed infrastructure, custom kernels, and systems instrumentation to maximize throughput (Infrastructure & Systems track).
  • Elevate engineering and research standards across Radical Numerics through documentation, blogs, technical reports, and papers.

Required Skills:

  • Proven track record in world-class engineering and/or fundamental research in large-scale training infrastructure, frontier model pre/post-training, or high-throughput data pipelines.
  • Proficiency in building production-quality software (e.g., Python, PyTorch, CUDA, C++) with a focus on performance and reliability.
  • Excellent written and verbal communication skills bridging technical and scientific domains.
  • Intellectual curiosity with a bias toward experimentation, iteration, and continuous improvement.

Nice to Have:

  • Contributions to open-source ML systems or tooling.
  • Familiarity with modern MLOps, experiment tracking, and evaluation frameworks.
  • Background in applied math, systems, computational biology, or related quantitative sciences.

Why Radical Numerics:

  • Be part of the team advancing multimodal biological world models and managing one of the largest biomedical datasets.
  • Join a collaborative culture that values rigor, creativity, and cross-disciplinary partnerships across AI labs, biotechs, and research institutes.
  • Enjoy competitive compensation, comprehensive benefits, and support for continual learning.

How to Apply: Share your resume, and links to projects or publications that showcase your work. Applications are reviewed on a rolling basis.

Apply for this job

*

indicates a required field

Phone
Resume/CV*

Accepted file types: pdf, doc, docx, txt, rtf