Back to jobs
New

Senior Machine Learning Engineer – End-to-End Autonomous Driving

Santa Clara, CA
XPENG is a leading smart technology company at the forefront of innovation, integrating advanced AI and autonomous driving technologies into its vehicles, including electric vehicles (EVs), electric vertical take-off and landing (eVTOL) aircraft, and robotics. With a strong focus on intelligent mobility, XPENG is dedicated to reshaping the future of transportation through cutting-edge R&D in AI, machine learning, and smart connectivity.
 
We are seeking Deep Learning Engineers with strong expertise in machine learning (ML) and deep learning (DL) system design, along with solid software development skills. In this role, you will research, implement, and evaluate a unified end-to-end onboard model leveraging state-of-the-art technologies, including transformer-based architectures, diffusion models, reinforcement learning, and Vision-Language-Action (VLA) models. You will collaborate with a world-class team of experts in computer vision, AI systems, and software engineering to push the boundaries of autonomous vehicle performance. Your work will be powered by vast amounts of real-world multimodal data from our autonomous fleet, enabling the development of next-generation AI-driven driving solutions.
 
Job Responsibilities:
  • Research and develop cutting-edge deep learning algorithms for a unified, end-to-end onboard model that seamlessly integrates perception, prediction, and planning, replacing traditional modular model pipelines.
  • Research and develop Vision-Language-Action (VLA) models to enable context-aware, multimodal decision-making, allowing the model to understand visual, textual, and action-based cues for enhanced driving intelligence.
  • Design and optimize highly efficient neural network architectures, ensuring they achieve low-latency, real-time execution on the vehicle’s high-performance computing platform, balancing accuracy, efficiency, and robustness.
  • Develop and scale an offline machine learning (ML) infrastructure to support rapid adaptation, large-scale training, and continuous self-improvement of end-to-end models, leveraging self-supervised learning, imitation learning, and reinforcement learning.
  • Deliver production-quality onboard software, working closely with sensor fusion, mapping, and perception teams to build the industry’s most intelligent and adaptive autonomous driving system.
  • Leverage massive real-world datasets collected from our autonomous fleet, integrating multi-modal sensor data to train and refine state-of-the-art end-to-end driving models.
  • Design, conduct, and analyze large-scale experiments, including sim-to-real transfer, closed-loop evaluation, and real-world testing to rigorously benchmark model performance and generalization.
  • Collaborate with system software engineers to deploy high-performance deep learning models on embedded automotive hardware, ensuring real-world robustness and reliability under diverse driving conditions.
  • Work cross-functionally with AI researchers, computer vision experts, and autonomous driving engineers to push the frontier of end-to-end learning, leveraging advances in transformer-based architectures, diffusion models, and reinforcement learning to redefine the future of autonomous mobility.
 
Minimum Skill Requirements:
  • MS or PhD level education in Engineering or Computer Science with a focus on Deep Learning, Artificial Intelligence, or a related field, or equivalent experience. Open to recent graduates.
  • Strong experience in applied deep learning including model architecture design, model training, data mining, and data analytics.
  • 1-3 years + of experience working with DL frameworks such as PyTorch, Tensorflow.
  • Strong Python programming experience with software design skills.
  • Solid understanding of data structures, algorithms, code optimization and large-scale data processing.
  • Excellent problem-solving skills.
 
Preferred Skill Requirements:
  • Hands on experience in developing DL based planning engine for autonomous driving.
  • Experience in applying CNN/RNN/GNN, attention model, or time series analysis to real world problems.
  • Experience in other ML/DL applications, e.g., reinforcement learning.
  • Experience in DL model deployment and optimization tools such as ONNX and TensorRT.
 
The base salary range for this full-time position is $174,720 - $295,680, in addition to bonus, equity and benefits. Our salary ranges are determined by role, level, and location. The range displayed on each job posting reflects the minimum and maximum target for new hire salaries for the position across all US locations. Within the range, individual pay is determined by work location and additional factors, including job-related skills, experience, and relevant education or training.
 
We are an Equal Opportunity Employer. It is our policy to provide equal employment opportunities to all qualified persons without regard to race, age, color, sex, sexual orientation, religion, national origin, disability, veteran status or marital status or any other prescribed category set forth in federal or state regulations.

Apply for this job

*

indicates a required field

Resume/CV*

Accepted file types: pdf, doc, docx, txt, rtf

Cover Letter

Accepted file types: pdf, doc, docx, txt, rtf


Select...
Select...
Select...
Select...

Voluntary Self-Identification

For government reporting purposes, we ask candidates to respond to the below self-identification survey. Completion of the form is entirely voluntary. Whatever your decision, it will not be considered in the hiring process or thereafter. Any information that you do provide will be recorded and maintained in a confidential file.

As set forth in XPENG’s Equal Employment Opportunity policy, we do not discriminate on the basis of any protected group status under any applicable law.

Select...
Select...
Race & Ethnicity Definitions

If you believe you belong to any of the categories of protected veterans listed below, please indicate by making the appropriate selection. As a government contractor subject to the Vietnam Era Veterans Readjustment Assistance Act (VEVRAA), we request this information in order to measure the effectiveness of the outreach and positive recruitment efforts we undertake pursuant to VEVRAA. Classification of protected categories is as follows:

A "disabled veteran" is one of the following: a veteran of the U.S. military, ground, naval or air service who is entitled to compensation (or who but for the receipt of military retired pay would be entitled to compensation) under laws administered by the Secretary of Veterans Affairs; or a person who was discharged or released from active duty because of a service-connected disability.

A "recently separated veteran" means any veteran during the three-year period beginning on the date of such veteran's discharge or release from active duty in the U.S. military, ground, naval, or air service.

An "active duty wartime or campaign badge veteran" means a veteran who served on active duty in the U.S. military, ground, naval or air service during a war, or in a campaign or expedition for which a campaign badge has been authorized under the laws administered by the Department of Defense.

An "Armed forces service medal veteran" means a veteran who, while serving on active duty in the U.S. military, ground, naval or air service, participated in a United States military operation for which an Armed Forces service medal was awarded pursuant to Executive Order 12985.

Select...

Voluntary Self-Identification of Disability

Form CC-305
Page 1 of 1
OMB Control Number 1250-0005
Expires 04/30/2026

Why are you being asked to complete this form?

We are a federal contractor or subcontractor. The law requires us to provide equal employment opportunity to qualified people with disabilities. We have a goal of having at least 7% of our workers as people with disabilities. The law says we must measure our progress towards this goal. To do this, we must ask applicants and employees if they have a disability or have ever had one. People can become disabled, so we need to ask this question at least every five years.

Completing this form is voluntary, and we hope that you will choose to do so. Your answer is confidential. No one who makes hiring decisions will see it. Your decision to complete the form and your answer will not harm you in any way. If you want to learn more about the law or this form, visit the U.S. Department of Labor’s Office of Federal Contract Compliance Programs (OFCCP) website at www.dol.gov/ofccp.

How do you know if you have a disability?

A disability is a condition that substantially limits one or more of your “major life activities.” If you have or have ever had such a condition, you are a person with a disability. Disabilities include, but are not limited to:

  • Alcohol or other substance use disorder (not currently using drugs illegally)
  • Autoimmune disorder, for example, lupus, fibromyalgia, rheumatoid arthritis, HIV/AIDS
  • Blind or low vision
  • Cancer (past or present)
  • Cardiovascular or heart disease
  • Celiac disease
  • Cerebral palsy
  • Deaf or serious difficulty hearing
  • Diabetes
  • Disfigurement, for example, disfigurement caused by burns, wounds, accidents, or congenital disorders
  • Epilepsy or other seizure disorder
  • Gastrointestinal disorders, for example, Crohn's Disease, irritable bowel syndrome
  • Intellectual or developmental disability
  • Mental health conditions, for example, depression, bipolar disorder, anxiety disorder, schizophrenia, PTSD
  • Missing limbs or partially missing limbs
  • Mobility impairment, benefiting from the use of a wheelchair, scooter, walker, leg brace(s) and/or other supports
  • Nervous system condition, for example, migraine headaches, Parkinson’s disease, multiple sclerosis (MS)
  • Neurodivergence, for example, attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, dyslexia, dyspraxia, other learning disabilities
  • Partial or complete paralysis (any cause)
  • Pulmonary or respiratory conditions, for example, tuberculosis, asthma, emphysema
  • Short stature (dwarfism)
  • Traumatic brain injury
Select...

PUBLIC BURDEN STATEMENT: According to the Paperwork Reduction Act of 1995 no persons are required to respond to a collection of information unless such collection displays a valid OMB control number. This survey should take about 5 minutes to complete.